Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add filters








Language
Year range
1.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 177-184, 2022.
Article in English | WPRIM | ID: wpr-929249

ABSTRACT

Nephrotic syndrome (NS) is a kidney disease characterized by hypertriglyceridemia, massive proteinuria, hypo-albuminemia and peripheral edema. Sinkihwan-gamibang (SKHGMB) was recorded in a traditional Chinese medical book named "Bangyakhappyeon ()" and its three prescriptions Sinkihwan, Geumgwe-sinkihwan, and Jesaeng-sinkihwan belong to Gamibang. This study confirmed the effect of SKHGMB on renal dysfunction in an NS model induced by puromycin aminonucleoside (PAN). The experimental NS model was induced in male Sprague Dawley (SD) rats through injection of PAN (50 mg·kg-1)via the femoral vein. SKHGMB not only reduced the size of the kidneys increased due to PAN-induced NS, but also decreased proteinuria and ascites. In addition, SKHGMB significantly ameliorated creatinine clearance, creatinine, and blood urea nitrogen. SKHGMB relieved glomeruli dilation and tubules fibrosis in the glomeruli of the NS model. SKHGMB inhibited the protein and mRNA levels of the NLRP3 inflammasome including NLRP3, ASC, and pro-caspase-1 in NS rats. SKHGMB reduced the protein and mRNA levels of fibrosis regulators in NS rats. The results indicated that SKHGMB exerts protective effects against renal dysfunction by inhibiting of renal inflammation and fibrosis in NS rats.


Subject(s)
Animals , Male , Rats , Kidney , Nephrotic Syndrome/drug therapy , Proteinuria/metabolism , Puromycin Aminonucleoside/toxicity , Rats, Sprague-Dawley
2.
Chinese journal of integrative medicine ; (12): 448-454, 2018.
Article in English | WPRIM | ID: wpr-687928

ABSTRACT

<p><b>OBJECTIVE</b>To investigate whether the methanol extract of Berberis amurensis Rupr. (BAR) augments penile erection using in vitro and in vivo experiments.</p><p><b>METHODS</b>The ex vivo study used corpus cavernosum strips prepared from adult male New Zealand White rabbits. In in vivo studies for intracavernous pressure (ICP), blood pressure, mean arterial pressure (MAP), and increase of peak ICP were continuously monitored during electrical stimulation of Sprague-Dawley rats.</p><p><b>RESULTS</b>Preconstricted with phenylephrine (PE) in isolated endotheliumintact rabbit corus cavernosum, BAR relaxed penile smooth muscle in a dose-dependent manner, which was inhibited by pretreatment with NG-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase inhibitor, and H-[1,2,4]-oxadiazole-[4,3-α]-quinoxalin-1-one, a soluble guanylyl cclase inhibitor. BAR significantly relaxed penile smooth muscles dose-dependently in ex vivo, and this was inhibited by pretreatment with L-NAME H-[1,2,4]-oxadiazole-[4,3-α]-quinoxalin-1-one. BAR-induced relaxation was significantly attenuated by pretreatment with tetraethylammonium (TEA, P<0.01), a nonselective K channel blocker, 4-aminopyridine (4-AP, P<0.01), a voltage-dependent K channel blocker, and charybdotoxin (P<0.01), a large and intermediate conductance Ca sensitive-K channel blocker, respectively. BAR induced an increase in peak ICP, ICP/MAP ratio and area under the curve dose dependently.</p><p><b>CONCLUSION</b>BAR augments penile erection via the nitric oxide/cyclic guanosine monophosphate system and Ca sensitive-K (BK and IK) channels in the corpus cavernosum.</p>


Subject(s)
Animals , Male , Rabbits , Area Under Curve , Berberis , Chemistry , Blood Pressure , Cyclic GMP , Metabolism , Epoprostenol , Pharmacology , In Vitro Techniques , Indomethacin , Pharmacology , Models, Biological , Muscle Relaxation , Muscle, Smooth , Physiology , NG-Nitroarginine Methyl Ester , Pharmacology , Nitric Oxide , Metabolism , Penile Erection , Phenylephrine , Pharmacology , Plant Extracts , Pharmacology , Potassium Channel Blockers , Pharmacology , Potassium Channels , Metabolism , Pressure
3.
Journal of Integrative Medicine ; (12): 326-336, 2017.
Article in English | WPRIM | ID: wpr-346244

ABSTRACT

<p><b>OBJECTIVE</b>This study aimed to evaluate whether Hwangryunhaedoktang (HHT), a herbal compound, has an inhibitory effect on lipopolysaccharide (LPS)-induced inflammation in RAW264.7 macrophages.</p><p><b>METHODS</b>The effects of HHT were evaluated by confirming nitric oxide (NO) production and expression of inducible NO synthase (iNOS) and mitogen-activated protein kinases (MAPKs) in LPS-stimulated RAW264.7 macrophages via the Griess assay, Western blotting, and real-time reverse transcription quantitative polymerase chain reaction. Western blot analyses and luciferase assays were used to evaluate whether HHT has an effect on the phosphorylation and translocation of nuclear factor-κB (NF-κB). The secretion and expression of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were determined via enzyme-linked immunosorbent assay and Western blot analyses.</p><p><b>RESULTS</b>HHT suppressed LPS-induced NO production and expression of iNOS in a dose-dependent manner. Additionally, MAPKs activation was also attenuated via inhibition of phosphorylation of extracellular signal-regulated kinases 1/2, c-Jun N-terminal kinase and p38 which were related to inflammatory pathway. Furthermore, HHT also effectively attenuated NF-κB activation and its translocation to the nucleus, a process that is closely linked to inflammation. LPS normally induced the expression of inflammatory cytokines such as TNF-α and IL-6, but the secretion and expression of TNF-α and IL-6 were significantly attenuated by pretreating the cells with HHT.</p><p><b>CONCLUSION</b>HHT suppressed LPS-induced NO production by blocking the activation of NF-κB and MAPK signaling pathways in RAW264.7 macrophages. Furthermore, HHT may have an anti-inflammatory effect by suppressing the LPS-induced secretion of TNF-α and IL-6. Therefore, the traditional herbal formula HHT might be a useful potential therapeutic agent for inflammation.</p>

4.
The Korean Journal of Physiology and Pharmacology ; : 65-70, 2001.
Article in English | WPRIM | ID: wpr-728113

ABSTRACT

The present study was aimed to explore pathophysiological implications of nitric oxide in the development of left and right ventricular hypertrophy. To induce selective left and right ventricular hypertrophy, rats were made two-kidney, one clip (2K1C) hypertensive and treated with monocrotaline (MCT), respectively. Six weeks later, the hearts were taken and their ventricular tissue mRNA and protein expression of endothelial constitutive isoform of nitric oxide synthase (NOS) were determined by reverse transcription-polymerase chain reaction and Western blot analysis, respectively. In 2K1C hypertensive rats, the expression of NOS mRNA was increased in parallel with its proteins in the left ventricle, but not in the right ventricle. In MCT-treated rats, the expression of NOS mRNA and proteins were proportionally increased in the right ventricle, but not in the left ventricle. These results suggest that the expression of NOS is specifically increased in association with the ventricular hypertrophy, which may be a mechanism counteracting the hypertrophy.


Subject(s)
Animals , Rats , Blotting, Western , Cardiomegaly , Heart , Heart Ventricles , Hypertrophy , Hypertrophy, Right Ventricular , Monocrotaline , Nitric Oxide Synthase , Nitric Oxide , RNA, Messenger
5.
Journal of Korean Medical Science ; : 425-430, 2000.
Article in English | WPRIM | ID: wpr-135358

ABSTRACT

The present study was aimed at investigating whether an altered role of nitric oxide (NO) is involved in chronic renal failure (CRF). Rats were subjected to 5/6 nephrectomy and kept for 6 weeks to induce CRF. On the experimental day, after measurement of arterial pressure under anesthesia, the arterial blood was collected, and thoracic aorta and kidney were rapidly taken. NO metabolites (NOx) were determined in the plasma, urine, aorta and kidney. The expression of NO synthase (NOS) isozymes was determined in the kidney and aorta by Western blot analysis. The expression of NOS mRNA in the glomeruli was also determined by RT-PCR. There were significant increases in arterial pressure and serum creatinine levels in CRF. Urine NOx levels were decreased in CRF, whereas plasma NOx levels were not altered. Aorta and kidney tissue NOx levels were also decreased in CRF. The expression of endothelial constitutive (ec) and inducible (i) isoforms of NOS proteins was decreased in the kidney and aorta in CRF. Accordingly, the expression of ecNOS and iNOS mRNA was decreased in the glomeruli in CRF. In conclusion, NO synthesis is decreased in the kidney and vasculature of CRF rats.


Subject(s)
Male , Rats , Animals , Aorta, Thoracic/metabolism , Comparative Study , Enzyme Induction , Isoenzymes , Isoenzymes/genetics , Kidney/metabolism , Kidney Failure, Chronic , Nephrectomy , Nitrates/urine , Nitrates/blood , Nitric Oxide , Nitric Oxide/biosynthesis , Nitric Oxide Synthase , Nitric Oxide Synthase/genetics , Nitrites/urine , Nitrites/blood , Organ Specificity , RNA, Messenger/biosynthesis , Rats, Sprague-Dawley
6.
Journal of Korean Medical Science ; : 425-430, 2000.
Article in English | WPRIM | ID: wpr-135355

ABSTRACT

The present study was aimed at investigating whether an altered role of nitric oxide (NO) is involved in chronic renal failure (CRF). Rats were subjected to 5/6 nephrectomy and kept for 6 weeks to induce CRF. On the experimental day, after measurement of arterial pressure under anesthesia, the arterial blood was collected, and thoracic aorta and kidney were rapidly taken. NO metabolites (NOx) were determined in the plasma, urine, aorta and kidney. The expression of NO synthase (NOS) isozymes was determined in the kidney and aorta by Western blot analysis. The expression of NOS mRNA in the glomeruli was also determined by RT-PCR. There were significant increases in arterial pressure and serum creatinine levels in CRF. Urine NOx levels were decreased in CRF, whereas plasma NOx levels were not altered. Aorta and kidney tissue NOx levels were also decreased in CRF. The expression of endothelial constitutive (ec) and inducible (i) isoforms of NOS proteins was decreased in the kidney and aorta in CRF. Accordingly, the expression of ecNOS and iNOS mRNA was decreased in the glomeruli in CRF. In conclusion, NO synthesis is decreased in the kidney and vasculature of CRF rats.


Subject(s)
Male , Rats , Animals , Aorta, Thoracic/metabolism , Comparative Study , Enzyme Induction , Isoenzymes , Isoenzymes/genetics , Kidney/metabolism , Kidney Failure, Chronic , Nephrectomy , Nitrates/urine , Nitrates/blood , Nitric Oxide , Nitric Oxide/biosynthesis , Nitric Oxide Synthase , Nitric Oxide Synthase/genetics , Nitrites/urine , Nitrites/blood , Organ Specificity , RNA, Messenger/biosynthesis , Rats, Sprague-Dawley
7.
Journal of Korean Medical Science ; : 183-188, 2000.
Article in English | WPRIM | ID: wpr-18573

ABSTRACT

We investigated to see whether an altered role of nitric oxide (NO) system is involved in erythropoietin (EPO)-induced hypertension in chronic renal failure (CRF). Male Sprague-Dawley rats were five-sixths nephrectomized to induce CRF. Six weeks after the operation, EPO or vehicle was injected for another 6 weeks. Plasma and urine nitrite/nitrate (NOx) levels were determined. Expression of NO synthase (NOS) proteins in the aortae and kidneys were also determined. In addition, the isometric tension of isolated aorta in response to acetylcholine and nitroprusside was examined. Blood pressure progressively rose in CRF groups, the degree of which was augmented by EPO treatment. Plasma NOx levels did not differ among the groups, while urine NOx levels were lower in CRF groups. Endothelial NOS expression was lower in the kidney and aorta in CRF rats, which was not further affected by EPO-treatment. The inducible NOS expression in the kidney and aorta was not different among the groups. Acetylcholine and sodium nitroprusside caused dose-dependent relaxations of aortic rings, the degree of which was not altered by EPO-treatment. Taken together, EPO-treatment aggravates hypertension in CRF, but altered role of NO system may not be involved.


Subject(s)
Male , Rats , Acetylcholine/pharmacology , Anemia/metabolism , Anemia/etiology , Anemia/drug therapy , Animals , Aorta, Thoracic/physiology , Body Weight , Erythropoietin/pharmacology , Hypertension, Renal/metabolism , Hypertension, Renal/drug therapy , Isometric Contraction/drug effects , Kidney/enzymology , Kidney Failure, Chronic/metabolism , Kidney Failure, Chronic/complications , Nitrates/urine , Nitrates/blood , Nitric Oxide/metabolism , Nitric Oxide Synthase/metabolism , Nitrites/urine , Nitrites/blood , Nitroprusside/pharmacology , Rats, Sprague-Dawley , Vasoconstriction/drug effects , Vasoconstrictor Agents/pharmacology , Vasodilator Agents/pharmacology
8.
Journal of Korean Medical Science ; : 497-501, 1999.
Article in English | WPRIM | ID: wpr-187370

ABSTRACT

The present study was aimed at investigating the regulation of atrial natriuretic peptide (ANP) system in association with either enhanced or attenuated activity of the renin-angiotensin system (RAS). The cardiac tissue mRNA and peptide levels of ANP were measured in rats with two-kidney, one clip (2K1C) or deoxycorticosterone acetate (DOCA)-salt hypertension. Plasma renin concentration was increased in 2K1C hypertension along with increases of renin mRNA and protein contents in the clipped kidney. On the contrary, it was suppressed in DOCA-salt hypertension along with decreases of renin mRNA and protein contents in the remaining kidney. The plasma ANP concentration was similarly increased in both models of hypertension. The cardiac tissue ANP contents were not significantly changed, but the tissue ANP mRNA levels were upregulated in the hypertrophied heart in these two models of hypertension. It is suggested that the cardiac ANP system is transcriptionally enhanced by cardiac hypertrophy associated with hypertension, independent of the systemic RAS.


Subject(s)
Male , Rats , Animals , Atrial Natriuretic Factor/metabolism , Desoxycorticosterone , Gene Expression Regulation , Hypertension/metabolism , Hypertension/chemically induced , Myocardium/pathology , Organ Size , Peptides , RNA, Messenger/analysis , Rats, Sprague-Dawley , Renin/genetics , Renin/blood , Renin-Angiotensin System/physiology
9.
Journal of Korean Medical Science ; : 386-392, 1999.
Article in English | WPRIM | ID: wpr-171455

ABSTRACT

Pathophysiological implications of the vascular nitric oxide (NO)/cGMP pathway were investigated in various rat models of hypertension. The expression of brain and endothelial constitutive NO synthases (bNOS, ecNOS) was determined by Western blot analysis, and the biochemical activity of soluble and particulate guanylate cyclases (GC) was assessed by the amount of cGMP generated in the thoracic aortae of rats with deoxycorticosterone acetate (DOCA)-salt, two-kidney, one dip (2K1C), and spontaneous hypertension (SHR). Plasma nitrite/ nitrate levels were decreased in DOCA-salt and 2K1C hypertension, and increased in SHR. The vascular expression of bNOS as well as that of ecNOS was decreased along with tissue nitrite/nitrate contents in DOCA-salt and 2K1C hypertension. The expression of both bNOS and ecNOS was increased in SHR with concomitant changes of tissue nitrite/nitrate contents. The activity of soluble GC was decreased, and that of particulate GC was increased in DOCA-salt hypertension. The soluble GC activity was increased, while the particulate GC activity was not affected in 2K1C hypertension. The soluble GC activity was not significantly changed, but the particulate GC activity was decreased in SHR. These results indicate that the high blood pressure is associated with differentially-altered vascular NO/cGMP pathway in different models of hypertension.


Subject(s)
Male , Rats , Animals , Aorta, Thoracic/enzymology , Atrial Natriuretic Factor/blood , Blotting, Western , Desoxycorticosterone , Guanylate Cyclase/metabolism , Guanylate Cyclase/analysis , Hypertension/enzymology , Hypertension/chemically induced , Isoenzymes/metabolism , Isoenzymes/analysis , Nitrates/blood , Nitric Oxide Synthase/metabolism , Nitrites/blood , Rats, Inbred SHR , Rats, Inbred WKY , Rats, Sprague-Dawley , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL